Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 1, 2026
- 
            Introgression is pervasive across the tree of life but varies across taxa, geography, and genomic regions. However, the factors modulating this variation and how they may be affected by global change are not well understood. Here, we used 200 genomes and a 15-y site-specific environmental dataset to investigate the effects of environmental variation and mating system divergence on the magnitude of introgression between a recently diverged outcrosser-selfer pair of annual plants in the genusClarkia. These sister taxa diverged very recently and subsequently came into secondary sympatry where they form replicated contact zones. Consistent with observations of other outcrosser-selfer pairs, we found that introgression was asymmetric between taxa, with substantially more introgression from the selfer to the outcrosser. This asymmetry was caused by a bias in the direction of initial F1 hybrid formation and subsequent backcrossing. We also found extensive variation in the outcrosser’s admixture proportion among contact zones, which was predicted nearly entirely by interannual variance in spring precipitation. Greater fluctuations in spring precipitation resulted in higher admixture proportions, likely mediated by the effects of spring precipitation on the expression of traits that determine premating reproductive isolation. Climate-driven hybridization dynamics may be particularly affected by global change, potentially reshaping species boundaries and adaptation to novel environments.more » « less
- 
            Suh, Alexander; Chapman, Tracey (Ed.)Abstract It is unclear how mobile DNA sequences (transposable elements, hereafter TEs) invade eukaryotic genomes and reach stable copy numbers, as transposition can decrease host fitness. This challenge is particularly stark early in the invasion of a TE family at which point hosts may lack the specialized machinery to repress the spread of these TEs. One possibility (in addition to the evolution of host regulation of TEs) is that TE families may evolve to preferentially insert into chromosomal regions that are less likely to impact host fitness. This may allow the mean TE copy number to grow while minimizing the risk for host population extinction. To test this, we constructed simulations to explore how the transposition probability and insertion preference of a TE family influence the evolution of mean TE copy number and host population size, allowing for extinction. We find that the effect of a TE family’s insertion preference depends on a host’s ability to regulate this TE family. Without host repression, a neutral insertion preference increases the frequency of and decreases the time to population extinction. With host repression, a preference for neutral insertions minimizes the cumulative deleterious load, increases population fitness, and, ultimately, avoids triggering an extinction vortex.more » « less
- 
            VITTE, Clémentine (Ed.)Structural differences between genomes are a major source of genetic variation that contributes to phenotypic differences. Transposable elements, mobile genetic sequences capable of increasing their copy number and propagating themselves within genomes, can generate structural variation. However, their repetitive nature makes it difficult to characterize fine-scale differences in their presence at specific positions, limiting our understanding of their impact on genome variation. Domesticated maize is a particularly good system for exploring the impact of transposable element proliferation as over 70% of the genome is annotated as transposable elements. High-quality transposable element annotations were recently generated forde novogenome assemblies of 26 diverse inbred maize lines. We generated base-pair resolved pairwise alignments between the B73 maize reference genome and the remaining 25 inbred maize line assemblies. From this data, we classified transposable elements as either shared or polymorphic in a given pairwise comparison. Our analysis uncovered substantial structural variation between lines, representing both simple and complex connections between TEs and structural variants. Putative insertions in SNP depleted regions, which represent recently diverged identity by state blocks, suggest some TE families may still be active. However, our analysis reveals that within these recently diverged genomic regions, deletions of transposable elements likely account for more structural variation events and base pairs than insertions. These deletions are often large structural variants containing multiple transposable elements. Combined, our results highlight how transposable elements contribute to structural variation and demonstrate that deletion events are a major contributor to genomic differences.more » « less
- 
            Abstract Much theory has focused on how a population’s selfing rate affects the ability of natural selection to remove deleterious mutations from a population. However, most such theory has focused on mutations of a given dominance and fitness effect in isolation. It remains unclear how selfing affects the purging of deleterious mutations in a genome-wide context where mutations with different selection and dominance coefficients co-segregate. Here, we use individual-based forward simulations and analytical models to investigate how mutation, selection and recombination interact with selfing rate to shape genome-wide patterns of mutation accumulation and fitness. In addition to recovering previously described results for how selfing affects the efficacy of selection against mutations of a given dominance class, we find that the interaction of purifying selection against mutations of different dominance classes changes with selfing and recombination rates. In particular, when recombination is low and recessive deleterious mutations are common, outcrossing populations transition from purifying selection to pseudo-overdominance, dramatically reducing the efficacy of selection. At these parameter combinations, the efficacy of selection remains low until populations hit a threshold selfing rate, above which it increases. In contrast, selection is more effective in outcrossing than (partial) selfing populations when recombination rates are moderate to high and recessive deleterious mutations are rare.more » « less
- 
            Jennions, Michael D. (Ed.)When two species meet in secondary contact, the production of low fitness hybrids may be prevented by the adaptive evolution of increased prezygotic isolation, a process known as reinforcement. Theoretical challenges to the evolution of reinforcement are generally cast as a coordination problem, i.e., “how can statistical associations between traits and preferences be maintained in the face of recombination?” However, the evolution of reinforcement also poses a potential conflict between mates. For example, the opportunity costs to hybridization may differ between the sexes or species. This is particularly likely for reinforcement based on postmating prezygotic (PMPZ) incompatibilities, as the ability to fertilize both conspecific and heterospecific eggs is beneficial to male gametes, but heterospecific mating may incur a cost for female gametes. We develop a population genetic model of interspecific conflict over reinforcement inspired by “gametophytic factors”, which act as PMPZ barriers among Zea mays subspecies. We demonstrate that this conflict results in the transient evolution of reinforcement—after females adaptively evolve to reject gametes lacking a signal common in conspecific gametes, this gamete signal adaptively introgresses into the other population. Ultimately, the male gamete signal fixes in both species, and isolation returns to pre-reinforcement levels. We interpret geographic patterns of isolation among Z . mays subspecies considering these findings and suggest when and how this conflict can be resolved. Our results suggest that sexual conflict over fertilization may pose an understudied obstacle to the evolution of reinforcement.more » « less
- 
            Abstract Much research on the evolution of altruism via kin selection, group selection, and reciprocity focuses on the role of a single locus or quantitative trait. Very few studies have explored how linked selection, or selection at loci neighboring an altruism locus, impacts the evolution of altruism. While linked selection can decrease the efficacy of selection at neighboring loci, it might have other effects including promoting selection for altruism by increasing relatedness in regions of low recombination. Here, we used population genetic simulations to study how negative selection at linked loci, or background selection, affects the evolution of altruism. When altruism occurs between full siblings, we found that background selection interfered with selection on the altruistic allele, increasing its fixation probability when the altruistic allele was disfavored and reducing its fixation when the allele was favored. In other words, background selection has the same effect on altruistic genes in family‐structured populations as it does on other, nonsocial, genes. This contrasts with prior research showing that linked selective sweeps can favor the evolution of cooperation, and we discuss possibilities for resolving these contrasting results.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
